Circles Passing through 3 Distinct Points of the Square Lattice.

Hugo Pfoertner http://www.pfoertner.org/

The two sequences A192493 and A192494 give the squared radii of the circumcircles of non-degenerate triangles formed by 3 points of the square lattice, sorted by increasing size.
$R^{\wedge} 2(n)=A 192493(n) / A 192494(n)$.
To get minimal enclosing circles of $m>1$ given points of the square lattice, also circles supported only by two points forming the diameter of the enclosing circle would have to be considered.
However, there are only 5 squared radii of minimal enclosing circles not representable by circumcircles of non-degenerate triangles of lattice points:
$R^{\wedge} 2=(1 / 4) *\{1,9,49,81,121\}$, which are not included in the 2 sequences.

The representation starts to become non-unique for $R^{\wedge} 2>=9425 / 578$.
This is the first case, where lattice points supporting triangles with the same circumradius are found on circles with different centers, even when moved to a normalized location.

The following diagrams give examples for the sequence terms up to $R^{\wedge} 2=10$. If the squared radius can be represented by an \{obtuse (O , blue), right (R , red), acute (A, green)\} triangle, one such representation is given. Illustrations of the degenerate cases excluded from the sequences are also given.

The legend at the bottom of the diagram provides the squared radius $R^{\wedge} 2$, the radius R, the coordinates of the center of the cicumcircle, normalized such that $0<=x<=y, 0<=y<=1 / 2$.

The last line of the legend shows (number of grid points in the interior of the circumcircle) + (number of grid points on the circle boundary) = (total number of grid points covered).

Thanks to Hermann Jurksch for providing the list of circles and to Klaus Nagel for providing a program to create the illustrations.

Special Case, $\mathrm{R}^{\wedge} 2=1 / 4$ not representable by circumcircle of 3 points of square lattice

$$
\begin{gathered}
R^{2}=1 / 4=0.25000 \\
R=0.500000 \\
X=0 / 1 \\
Y=1 / 2 \\
0+2=2
\end{gathered}
$$

A192493(1) $=1, \mathrm{~A} 192494(1)=2$
Triangles: R

$$
\begin{gathered}
\mathrm{R}^{2}=1 / 2=0.50000 \\
\mathrm{R}=0.707107 \\
X=1 / 2 \\
Y=1 / 2 \\
0+4=4
\end{gathered}
$$

A192493(2) $=1, \mathrm{~A} 192494(2)=2$
Triangles: R

A192493(3) $=5$, A192494(3) $=4$

Triangles: R

$$
\begin{aligned}
& R \wedge 2=5 / 4=1.25000 \\
& R=1.118034 \\
& X=0 / 1 \\
& Y=1 / 2 \\
& 2+4=6
\end{aligned}
$$

A192493(4) $=25, \mathrm{~A} 192494(4)=18$
Triangles: A

$R \wedge 2=25 / 18=1.38889$
$R=1.178511$
$X=1 / 6$
$Y=1 / 6$
$3+3=6$

A192493(5) $=25, \mathrm{~A} 192494(5)=16$ Triangles: A

A192493(6) $=2, \mathrm{~A} 192494(6)=1$
Triangles: R

$R^{\wedge} 2=2 / 1=2.00000$
$R=1.414214$
$X=0 / 1$
$Y=0 / 1$
$5+4=9$

Special Case, $R^{\wedge} 2=9 / 4$ not representable by circumcircle of 3 points of square lattice

$R \wedge 2=9 / 4=2.25000$
$R=1.500000$
$X=0 / 1$
$Y=1 / 2$
$6+2=8$

A192493(7) $=5$, A192494(7) $=2$
Triangles: O R A

A192493(8) $=25, \mathrm{~A} 192494(8)=9$
Triangles: A

$R \wedge 2=25 / 9=2.77778$
$\mathrm{R}=1.666667$
$\mathrm{X}=0 / 1$
$\mathrm{Y}=1 / 3$
$7+3=10$

A192493(9) $=25, \mathrm{~A} 192494(9)=8$
Triangles: A

$R \wedge 2=25 / 8=3.12500$
$R=1.767767$
$X=1 / 4$
$Y=1 / 4$
$8+3=11$
$\mathrm{A} 192493(10)=13, \mathrm{~A} 192494(10)=4$
Triangles: R

$R \wedge 2=13 / 4=3.25000$
$R=1.802776$
$X=0 / 1$
$Y=1 / 2$
$8+4=12$

$$
A 192493(11)=325, A 192494(11)=98
$$

Triangles: A

A192493(12) = 169, A192494(12) $=50$
Triangles: A

A192493(13) $=65, \mathrm{~A} 192494(13)=18$
Triangles: O A

A192493(14) $=4, \mathrm{~A} 192494(14)=1$
Triangles: R

A192493(15) $=65, \mathrm{~A} 192494(15)=16$
Triangles: O A

$$
\begin{gathered}
\mathrm{R}^{2}=65 / 16=4.06250 \\
\mathrm{R}=2.015564 \\
\mathrm{X}=0 / 1 \\
\mathrm{Y}=1 / 4 \\
10+4=14
\end{gathered}
$$

$\mathrm{A} 192493(16)=17, \mathrm{~A} 192494(16)=4$
Triangles: R

$$
\begin{gathered}
R^{2}=17 / 4=4.25000 \\
R=2.061553 \\
X=0 / 1 \\
Y=1 / 2 \\
12+4=16
\end{gathered}
$$

A192493(17) $=425, A 192494(17)=98$
Triangles: O

A192493(18) = 221, A192494(18) $=50$
Triangles: O A

$$
\begin{gathered}
R^{2}=221 / 50=4.42000 \\
R=2.102380 \\
X=1 / 10 \\
Y=1 / 10 \\
11+4=15
\end{gathered}
$$

$$
\text { A192493(19) }=9, \mathrm{~A} 192494(19)=2
$$

Triangles: R

A192493(20) =289, A192494(20) $=64$
Triangles: A

$$
\begin{gathered}
R^{2}=289 / 64=4.51562 \\
R=2.12500 \\
X=0 / 1 \\
Y=1 / 8 \\
12+3=15
\end{gathered}
$$

A192493(21) = 1105, A192494(21) $=242$
Triangles: A

A192493(22) = 169, A192494(22) = 36
 Triangles: A

A192493(23) $=85, \mathrm{~A} 192494(23)=18$
Triangles: O A

$$
\begin{gathered}
R^{2}=85 / 18=4.7222 \\
R=2.17306 \\
X=1 / 6 \\
Y=1 / 6 \\
13+4=17
\end{gathered}
$$

A192493(24) $=5, \mathrm{~A} 192494(24)=1$
Triangles: O R A

A192493(25) $=325, A 192494(25)=64$
Triangles: O

$$
\begin{gathered}
R^{2}=325 / 64=5.07812 \\
R=2.253470 \\
X=1 / 8 \\
Y=1 / 4 \\
15+3=18
\end{gathered}
$$

$\mathrm{A} 192493(26)=85, \mathrm{~A} 192494(26)=16$
Triangles: O A

$$
\begin{gathered}
R^{2}=85 / 16=5.31250 \\
R=2.304886 \\
X=1 / 4 \\
Y=1 / 2 \\
14+4=18
\end{gathered}
$$

A192493(27) $=50, A 192494(27)=9$
Triangles: A

$R^{2}=50 / 9=5.55556$
$R=2.357023$
$X=1 / 3$
$Y=1 / 3$
$15+3=18$

A192493(28) $=1105, A 192494(28)=196$
Triangles: A

$$
\text { A192493(29) }=289, A 192494(29)=50
$$

Triangles: A

$$
\begin{gathered}
R^{2}=289 / 50=5.78000 \\
R=2.404163 \\
X=3 / 10 \\
Y=3 / 10 \\
17+3=20
\end{gathered}
$$

A192493(30) $=25, A 192494(30)=4$
Triangles: O R A

$$
\begin{gathered}
R^{2}=25 / 4=6.25000 \\
R=2.50000 \\
X=0 / 1 \\
Y=1 / 2 \\
16+6=22
\end{gathered}
$$

A192493(31) $=2125, A 192494(31)=338$
Triangles: A

$R^{2}=2125 / 338=6.28698$
$R=2.507386$
$X=3 / 26$
$Y=9 / 26$
$18+3=21$

A192493(32) $=625$, A192494(32) $=98$
Triangles: A

A192493(33) = 13, A192494(33) $=2$
Triangles: O R A

$$
\begin{gathered}
R^{2}=13 / 2=6.50000 \\
R=2.549510 \\
X=1 / 2 \\
Y=1 / 2 \\
16+8=24
\end{gathered}
$$

A192493(34) = 325, A192494(34) $=49$
Triangles: A

$$
\begin{gathered}
R^{2}=325 / 49=6.63266 \\
\mathrm{R}=2.575394 \\
\mathrm{X}=1 / 7 \\
\mathrm{Y}=3 / 7 \\
19+3=22
\end{gathered}
$$

A192493(35) $=425, \mathrm{~A} 192494(35)=64$
Triangles: O A

$$
\begin{gathered}
R^{2}=425 / 64=6.64062 \\
\mathrm{R}=2.576941 \\
\mathrm{X}=0 / 1 \\
\mathrm{Y}=3 / 8 \\
19+4=23
\end{gathered}
$$

A192493(36) $=1625, A 192494(36)=242$
Triangles: A

$\mathrm{R}^{\wedge} 2=1625 / 242=6.71488$
$\mathrm{R}=2.591308$
$X=1 / 22$
$Y=9 / 22$
$20+3=23$

A192493(37) = 169, A192494(37) $=25$
Triangles: A

$$
\begin{gathered}
R^{2}=169 / 25=6.76000 \\
R=2.600000 \\
X=0 / 1 \\
Y=2 / 5 \\
21+3=24
\end{gathered}
$$

A192493(38) = 1105, A192494(38) $=162$
Triangles: O

$$
\begin{gathered}
R^{2}=1105 / 162=6.82099 \\
R=2.6117 \varrho \\
X=1 / 18 \\
Y=7 / 18 \\
21+3=24
\end{gathered}
$$

$$
\begin{aligned}
& \text { A192493(39) }=125, \text { A192494(39) }=18 \\
& \text { Triangles: O A }
\end{aligned}
$$

$$
\begin{aligned}
& R \wedge 2=125 / 18=6.94444 \\
& R=2.635231 \\
& X=1 / 6 \\
& Y=1 / 2 \\
& 20+4=24
\end{aligned}
$$

A192493(40) = 65, A192494(40) $=9$
Triangles: O A

$$
\begin{gathered}
R^{2}=65 / 9=7.22222 \\
R=2.687419 \\
X=1 / 3 \\
Y=1 / 3 \\
20+4=24
\end{gathered}
$$

A192493(41) = 29, A192494(41) $=4$
Triangles: R

$$
\begin{aligned}
& R \wedge 2=29 / 4=7.25000 \\
& R=2.692582 \\
& X=0 / 1 \\
& Y=1 / 2 \\
& 22+4=26
\end{aligned}
$$

A192493(42) $=2465$, A192494(42) $=338$
Triangles: O

$R^{\wedge} \wedge 2=2465 / 338=7.29290$
$R=2.700537$
$X=5 / 26$
$Y=11 / 26$
$22+3=25$

A192493(43) $=4225, A 192494(43)=578$
Triangles: A

$R \wedge 2=4225 / 578=7.30969$
$\mathrm{R}=2.703644$
$X=11 / 34$
$Y=13 / 34$
$21+3=24$

A192493(44) $=1885, A 192494(44)=256$
Triangles: A

$\mathrm{R}^{\wedge} 2=1885 / 256=7.36328$
$\mathrm{R}=2.713537$
$X=5 / 16$
$\mathrm{Y}=3 / 8$
$22+3=25$

A192493(45) $=725, A 192494(45)=98$
Triangles: O A

$\mathrm{R} \wedge 2=725 / 98=7.39796$
$\mathrm{R}=2.719919$
$\mathrm{X}=5 / 14$
$\mathrm{Y}=5 / 14$
$22+4=26$

A192493(46) $=377, \mathrm{~A} 192494(46)=50$
Triangles: O A

A192493(47) $=2465, A 192494(47)=324$
Triangles: A

$R \wedge 2=2465 / 324=7.60802$
$\mathrm{R}=2.758265$
$X=5 / 18$
$Y=4 / 9$
$23+3=26$
$\mathrm{A} 192493(48)=5525, \mathrm{~A} 192494(48)=722$
Triangles: A

$$
\begin{aligned}
& R \wedge 2=5525 / 722=7.65235 \\
& R=2.766289 \\
& X=11 / 38 \\
& Y=17 / 38 \\
& 24+3=27
\end{aligned}
$$

A192493(49) $=1885, \mathrm{~A} 192494(49)=242$
Triangles: O

$R \wedge 2=1885 / 242=7.78926$
$\mathrm{R}=2.790924$
$\mathrm{X}=5 / 22$
$\mathrm{Y}=7 / 22$
$23+3=26$
$A 192493(50)=125, A 192494(50)=16$
Triangles: O A

$$
\begin{aligned}
& R^{\wedge} \wedge 2=125 / 16=7.81250 \\
& R=2.795085 \\
& X=1 / 4 \\
& Y=1 / 2 \\
& 24+4=28
\end{aligned}
$$

A192493(51) = 8, A192494(1) = 1
Triangles: R

$R \wedge 2=8 / 1=8.00000$
$\mathrm{R}=2.828427$
$X=0 / 1$
$Y=0 / 1$
$21+4=25$

A192493(52) $=145, A 192494(52)=18$

Triangles: O A

$$
\begin{aligned}
& R^{\wedge} \wedge 2=145 / 18=8.05556 \\
& R=2.838231 \\
& X=1 / 6 \\
& Y=1 / 6 \\
& 22+4=26
\end{aligned}
$$

$A 192493(53)=65, A 192494(53)=8$
Triangles: O A

$R \wedge 2=65 / 8=8.12500$
$R=2.850439$
$X=1 / 4$
$Y=1 / 4$
$24+4=28$

A192493(54) $=841, \mathrm{~A} 192494(54)=100$
Triangles: A

$\mathrm{R} \wedge 2=841 / 100=8.41000$
$\mathrm{R}=2.900000$
$\mathrm{X}=0 / 1$
$\mathrm{Y}=1 / 10$
$23+3=26$
$\mathrm{A} 192493(55)=17, \mathrm{~A} 192494(55)=2$
Triangles: O R A

$$
\begin{aligned}
& R \wedge 2=17 / 2=8.50000 \\
& R=2.915476 \\
& X=1 / 2 \\
& Y=1 / 2 \\
& 24+8=32
\end{aligned}
$$

A192493(56) $=841, A 192494(14)=98$
Triangles: A

$$
\begin{aligned}
& R^{\prime} \wedge 2=841 / 98=8.58163 \\
& R=2.929442 \\
& X=1 / 14 \\
& Y=1 / 14 \\
& 24+3=27
\end{aligned}
$$

A192493(57) $=845, A 192494(57)=98$
Triangles: O

$R^{\wedge} \wedge 2=845 / 98=8.62245$
$R=2.936401$
$X=1 / 14$
$Y=3 / 14$
$24+3=27$

A192493(58) $=425, A 192494(58)=49$
Triangles: O

$R \wedge 2=425 / 49=8.67347$
$\mathrm{R}=2.945075$
$X=1 / 7$
$\mathrm{Y}=2 / 7$
$26+3=29$

A192493(59) $=2125, \mathrm{~A} 192494(59)=49$
Triangles: O

$R \wedge 2=2125 / 242=8.78099$
$\mathrm{R}=2.963274$
$X=1 / 22$
$\mathrm{Y}=5 / 22$
$25+3=28$

A192493(60) $=221, A 192494(60)=25$
Triangles: O A

$\mathrm{R} \wedge 2=221 / 25=8.84000$
$\mathrm{R}=2.973214$
$\mathrm{X}=0 / 1$
$\mathrm{Y}=1 / 5$
$24+4=28$

A192493(61) = 6409, A192494(61) $=722$

Triangles: A

$R \wedge 2=6409 / 722=8.87673$
$\mathrm{R}=2.979384$
$X=1 / 38$
$Y=7 / 38$
$25+3=28$

A192493(62) $=9425, A 192494(62)=1058$
Triangles: A

$R \wedge 2=9425 / 1058=8.90832$
$R=2.984680$
$X=1 / 46$
$Y=9 / 46$
$26+3=29$

$$
A 192493(63)=9, A 192494(63)=1
$$

Triangles: R

$$
\begin{aligned}
& R \wedge 2=9 / 1=9.00000 \\
& R=3.000000 \\
& X=0 / 1 \\
& Y=0 / 1 \\
& 25+4=29
\end{aligned}
$$

$$
\begin{aligned}
& \text { A192493(64) }=325, A 192494(64)=36 \\
& \text { Triangles: O A }
\end{aligned}
$$

$$
\begin{aligned}
& R \wedge 2=325 / 36=9.02778 \\
& R=3.004626 \\
& X=0 / 1 \\
& Y=1 / 6 \\
& 26+4=30
\end{aligned}
$$

A192493(65) = 289, A192494(65) $=32$
Triangles: A

$R \wedge 2=289 / 32=9.03125$
$R=3.005204$
$X=1 / 8$
$Y=1 / 8$
$26+3=29$

A192493(66) $=145, A 192494(66)=16$ Triangles: O

$$
\begin{aligned}
& R \wedge 2=145 / 16=9.06250 \\
& R=3.010399 \\
& X=0 / 1 \\
& Y=1 / 4 \\
& 26+4=30
\end{aligned}
$$

A192493(67) $=1105, \mathrm{~A} 192494(67)=121$
Triangles: A

$$
\begin{aligned}
& \mathrm{R}^{\wedge} 2=1105 / 121=9.13223 \\
& \mathrm{R}=3.021958 \\
& \mathrm{X}=1 / 11 \\
& \mathrm{Y}=2 / 11 \\
& 27+3=30
\end{aligned}
$$

$$
A 192493(68)=37, A 192494(68)=4
$$

Triangles: R

$R \wedge 2=37 / 4=9.25000$
$R=3.041381$
$X=0 / 1$
$Y=1 / 2$
$26+4=30$

A192493(69) $=5365, A 192494(69)=578$
Triangles: A

A192493(70) $=3145, A 192494(70)=338$
Triangles: A

$$
\begin{gathered}
R^{2}=3145 / 338=9.30473 \\
R=3.050366 \\
X=1 / 26 \\
Y=7 / 26 \\
28+3=31
\end{gathered}
$$

A192493(71) = 169, A192494(71) $=18$ Triangles: A

$$
\begin{gathered}
R^{2}=169 / 18=9.38889 \\
R=3.064129 \\
X=1 / 6 \\
Y=1 / 6 \\
28+3=31
\end{gathered}
$$

A192493(72) $=2405, A 192494(72)=256$
Triangles: O

$$
\begin{aligned}
& R^{\wedge} \wedge 2=2405 / 256=9.39453 \\
& R=3.065050 \\
& X=1 / 16 \\
& Y=1 / 8 \\
& 28+3=31
\end{aligned}
$$

A192493(73) = 925, A192494(73) $=98$
Triangles: O A

$R^{\wedge} \wedge 2=925 / 98=9.43878$
$R=3.072259$
$X=1 / 14$
$Y=1 / 14$
$27+4=31$

A192493(74) $=85, \mathrm{~A} 192494(74)=9$
Triangles: O A

$$
\begin{aligned}
& R \wedge 2=85 / 9=9.44444 \\
& R=3.073181 \\
& X=0 / 1 \\
& Y=1 / 3 \\
& 28+4=32
\end{aligned}
$$

A192493(75) = 1369, A192494(75) $=144$
Triangles: A

$R \wedge 2=1369 / 144=9.50694$
$\mathrm{R}=3.083333$
$X=0 / 1$
$Y=1 / 12$
$28+3=31$

$$
A 192493(76)=4625, A 192494(76)=484
$$

Triangles: A

$R \wedge 2=4625 / 484=9.55579$
$R=3.091243$
$X=1 / 22$
$\mathrm{Y}=1 / 11$
$29+3=32$

A192493(77) $=481, \mathrm{~A} 192494(77)=50$
Triangles: O A

$$
\begin{aligned}
& R \wedge 2=481 / 50=9.62000 \\
& R=3.101612 \\
& X=1 / 10 \\
& Y=1 / 10
\end{aligned}
$$

$$
29+4=33
$$

A192493(78) $=625, A 192494(78)=64$
Triangles: A

$R \wedge 2=625 / 64=9.76562$
$R=3.125000$
$X=0 / 1$
$\mathrm{Y}=1 / 8$
$30+3=33$

A192493(79) $=493, A 192494(79)=50$
Triangles: O A

$$
\begin{aligned}
& R \wedge 2=493 / 50=9.86000 \\
& R=3.140064 \\
& X=1 / 10 \\
& Y=1 / 2 \\
& 28+4=32
\end{aligned}
$$

A192493(80) $=2405, \mathrm{~A} 192494(80)=242$
Triangles: O

$$
\begin{aligned}
& R^{\wedge} \wedge 2=2405 / 242=9.93802 \\
& R=3.152462 \\
& X=3 / 22 \\
& Y=7 / 22 \\
& 29+3=32
\end{aligned}
$$

A192493(81) = 10, A192494(81) $=1$
Triangles: O R A

$$
\begin{aligned}
& R \wedge 2=10 / 1=10.00000 \\
& R=3.162278 \\
& X=0 / 1 \\
& Y=0 / 1 \\
& 29+8=37
\end{aligned}
$$

Special Case, $R^{\wedge} 2=49 / 4$ not representable by circumcircle of 3 points of square lattice

Special Case, $\mathrm{R}^{\wedge} 2=81 / 4$ not representable by circumcircle of 3 points of square lattice

$$
\begin{gathered}
\mathrm{R}^{2}=81 / 4=20.25000 \\
\mathrm{R}=4.500000 \\
\mathrm{X}=0 / 1 \\
\mathrm{Y}=1 / 2 \\
60+2=62
\end{gathered}
$$

Special Case, $\mathrm{R}^{\wedge} 2=121 / 4$ not representable by circumcircle of 3 points of square lattice

$$
\begin{gathered}
\mathrm{R}^{2}=121 / 4=30.25000 \\
\mathrm{R}=5.500000 \\
\mathrm{X}=0 / 1 \\
\mathrm{Y}=1 / 2 \\
94+2=96
\end{gathered}
$$

In contrast to the special cases $R^{\wedge} 2=(1 / 4) *\{1,9,49,81,121\}$, $R^{\wedge} 2=169 / 4$ is representable by circumcircles of non-degenerate triangles. The cases in the list are the only minimal enclosing circles of lattice points defined by a diameter with no 3rd point on the circumcircle.

$R^{\wedge} 2=9425 / 578$ is the first case with more than one representation, i.e. there are two distinct circles with equal radius but with different center, each of them passing through 3 distinct grid points.
See next page for alternative representation.

$$
\begin{gathered}
R^{2}=9425 / 578=16.30623 \\
R=4.038097 \\
X=1 / 34 \\
Y=9 / 34 \\
49+3=52
\end{gathered}
$$

Second representation of $R^{\wedge} 2=9425 / 578$

